The Weak Dimensions of Gaussian Rings
نویسنده
چکیده
We provide necessary and sufficient conditions for a Gaussian ring R to be semihereditary, or more generally, of w.dimR ≤ 1. Investigating the weak global dimension of a Gaussian coherent ring R, we show that the only values w.dimR may take are 0, 1 and ∞; but that fP.dimR is always at most one. In particular, we conclude that a Gaussian coherent ring R is either Von Neumann regular, or semihereditary, or non-regular of w.dimR = ∞.
منابع مشابه
Interval valued fuzzy weak bi-ideals of $Gamma$-near-rings
In this paper, we introduce the concept of interval valued fuzzy weak bi-ideals of $Gamma$-near-rings, which is a generalized concept of fuzzy weak bi-ideals of $Gamma$- near-rings. We also characterize some properties and examples of interval valued fuzzy weak bi-ideals of $Gamma$-near-rings.
متن کاملOn (weak) Gorenstein Global Dimensions
In this note, we characterize the (weak) Gorenstein global dimension for arbitrary associative rings. Also, we extend the well-known Hilbert’s syzygy Theorem to the weak Gorenstein global dimension, and we study the weak Gorenstein homological dimensions of direct product of rings which gives examples of non-coherent rings with finite Gorenstein dimensions > 0 and infinite classical weak dimens...
متن کاملGlobal Gorenstein Dimensions of Polynomial Rings and of Direct Products of Rings
In this paper, we extend the well-known Hilbert’s syzygy theorem to the Gorenstein homological dimensions of rings. Also, we study the Gorenstein homological dimensions of direct products of rings. Our results generate examples of non-Noetherian rings of finite Gorenstein dimensions and infinite classical weak dimension.
متن کاملGorenstein Homological Dimensions of Commutative Rings
The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...
متن کاملCOTORSION DIMENSIONS OVER GROUP RINGS
Let $Gamma$ be a group, $Gamma'$ a subgroup of $Gamma$ with finite index and $M$ be a $Gamma$-module. We show that $M$ is cotorsion if and only if it is cotorsion as a $Gamma'$-module. Using this result, we prove that the global cotorsion dimensions of rings $ZGamma$ and $ZGamma'$ are equal.
متن کامل